ACCESSING DATA MINING RULES THROUGH EXPERT SYSTEMS

Author:

BOUTSINAS BASILIS1

Affiliation:

1. Department of Business Administration, University of Patras Artificial Intelligence Research Center (UPAIRC), University of Patras, 26500 Rio, Patras, Greece

Abstract

Data mining is an emerging research area that develops techniques for knowledge discovery in huge volumes of data. Usually, data mining rules can be used either to classify data into predefined classes, or to partition a set of patterns into disjoint and homogeneous clusters, or to reveal frequent dependencies among data. The discovery of data mining rules would not be very useful unless there are mechanisms to help analysts access them in a meaningful way. Actually, documenting and reporting the extracted knowledge is of considerable importance for the successful application of data mining in practice. In this paper, we propose a methodology for accessing data mining rules, which is based on using an expert system. We present how the different types of data mining rules can be transformed into the domain knowledge of any general-purpose expert system. Then, we present how certain attribute values given by the user as facts and/or goals can determine, through a forward and/or backward chaining, the related data mining rules. In this paper, we also present a case study that demonstrates the applicability of the proposed methodology.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Set Covering Based on Biclustering;International Journal of Information Technology & Decision Making;2014-09

2. Machine-part cell formation using biclustering;European Journal of Operational Research;2013-11

3. A NEW BICLUSTERING ALGORITHM BASED ON ASSOCIATION RULE MINING;International Journal on Artificial Intelligence Tools;2013-06

4. THE INCREMENTAL MINING OF CONSTRAINED CUBE GRADIENTS;International Journal of Information Technology & Decision Making;2007-06

5. AN ALTERNATIVE APPROACH TO FIRMS' EVALUATION: EXPERT SYSTEMS AND FUZZY LOGIC;International Journal of Information Technology & Decision Making;2006-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3