A New Breakpoint in Hybrid Particle Swarm-Neural Network Architecture: Individual Boundary Adjustment

Author:

Ceylan Rahime1,Koyuncu Hasan1

Affiliation:

1. Department of Electrical and Electronics Engineering, Selcuk University 42250 Konya, Turkey

Abstract

Neural Network (NN) is an effective classifier, but it generally uses the Backpropagation type algorithms which are insufficient because of trapping to local minimum of error rate. For elimination of this handicap, stochastic optimization algorithms are used to update the parameters of NN. Particle Swarm Optimization (PSO) is one of these providing a robust coherence with NN. In realized studies about Hybrid PSO-NN, position and velocity boundaries of weight and bias are chosen equal or set free in space which leave the performance of PSO-NN in suspense. In this paper, the limitations of weight velocity (wv), weight position (wp), bias velocity (bv) and bias position (bp) are diversely changed and their effects on the output of hybrid structure are examined. Concerning this, the formed structure is called as Bounded PSO-NN on account of adjusting the optimum operating conditions (intervals). On performance evaluation, proposed method is tested on binary and multiclass pattern classification by using six medical datasets: Wisconsin Breast Cancer (WBC), Pima Indian Diabetes (PID), Bupa Liver Disorders (BLD), Heart Statlog (HS), Breast Tissue (BT) and Dermatology Data (DD). Upon analyzing the results, it was revealed that Bounded PSO-NN has a faster processing time than general PSO-NNs in which set-free and wpi[Formula: see text]bpi and wvi[Formula: see text]bvi conditions are settled. The superiority in terms of processing time is about 199[Formula: see text]s (set-free) and 307[Formula: see text]s (wpi[Formula: see text]bpi and wvi[Formula: see text]bvi) for training, about 16[Formula: see text]ms (set-free) and 9[Formula: see text]ms (wpi[Formula: see text]bpi and wvi[Formula: see text]bvi) for test. In terms of classification performance, PSO-NN (set-free condition), PSO-NN (wpi[Formula: see text]bpi & wvi[Formula: see text]bvi) and PSO-NN with individual boundary adjustment (bounded PSO-NN) respectively achieves to accuracy rates as 69.84%, 95.31% and 97.22% on WBC, 47.01%, 76.69% and 77.73% on PID, 55.36%, 67.54% and 73.91% on BLD, 64.82%, 81.48% and 85.56% on HS, 75%, 92.31% and 100% on BT, 27.47%, 92.31% and 100% on DD. In the light of experiments, it is seen that Bounded PSO-NN is better than general PSO-NNs for obtaining the optimum results. Consequently, the importance of limitations is clarified and it is proven that each limitation must be adjusted individually, not be set free or not be chosen equal.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3