INFERENCE IN BAYESIAN NETWORKS: THE ROLE OF CONTEXT-SPECIFIC INDEPENDENCE

Author:

ZHANG NEVIN L.1

Affiliation:

1. Department of Computer Science, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China

Abstract

Three kinds of independence are of interest in the context of Bayesian networks, namely conditional independence, independence of causal influence, and context-specific independence. It is well-known that conditional independence enables one to factorize a joint probability into a list of conditional probabilities and thereby renders inference feasible. It has recently been shown that independence of causal influence leads to further factorizations of some of the conditional probabilities and consequently makes inference faster. This paper studies context-specific independence. We show that context-specific independence can be used to further decompose some of the conditional probabilities. We present an inference algorithm that takes advantage of the decompositions and provide, for the first time, empirical evidence that demonstrates the computational benefits of exploiting context-specific independence.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES AND PERIODIC POLICIES WITH APPLICATIONS;International Journal of Information Technology & Decision Making;2011-11

2. Generation and Characterization of a Rat Monoclonal Antibody Specific for Multiple Red Fluorescent Proteins;Hybridoma;2008-10

3. Factor metanetwork: a multilevel probabilistic meta-model based on factor graphs;International Journal of General Systems;2007-08

4. Bayesian Metanetwork for Context-Sensitive Feature Relevance;Advances in Artificial Intelligence;2006

5. A BAYESIAN METANETWORK;International Journal on Artificial Intelligence Tools;2005-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3