A Novel Multi-Perspective Benchmarking Framework for Selecting Image Dehazing Intelligent Algorithms Based on BWM and Group VIKOR Techniques

Author:

Abdulkareem Karrar Hameed12,Arbaiy Nureize1,Zaidan A. A.3,Zaidan B. B.3,Albahri O. S.3,Alsalem M. A.4,Salih Mahmood M.5

Affiliation:

1. Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia

2. Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia

3. College of Agriculture, Al-Muthanna University, Samawah 66001, Iraq

4. College of Administration and Economic, University of Mosul, Mosul, Iraq

5. Department of Computer Science, Computer Science and Mathematics College, Tikrit University, Tikrit 34001, Iraq

Abstract

The increasing demand for image dehazing-based applications has raised the value of efficient evaluation and benchmarking for image dehazing algorithms. Several perspectives, such as inhomogeneous foggy, homogenous foggy, and dark foggy scenes, have been considered in multi-criteria evaluation. The benchmarking for the selection of the best image dehazing intelligent algorithm based on multi-criteria perspectives is a challenging task owing to (a) multiple evaluation criteria, (b) criteria importance, (c) data variation, (d) criteria conflict, and (e) criteria tradeoff. A generally accepted framework for benchmarking image dehazing performance is unavailable in the existing literature. This study proposes a novel multi-perspective (i.e., an inhomogeneous foggy scene, a homogenous foggy scene, and a dark foggy scene) benchmarking framework for the selection of the best image dehazing intelligent algorithm based on multi-criteria analysis. Experiments were conducted in three stages. First was an evaluation experiment with five algorithms as part of matrix data. Second was a crossover between image dehazing intelligent algorithms and a set of target evaluation criteria to obtain matrix data. Third was the ranking of the image dehazing intelligent algorithms through integrated best–worst and VIseKriterijumska Optimizacija I Kompromisno Resenje methods. Individual and group decision-making contexts were applied to demonstrate the efficiency of the proposed framework. The mean was used to objectively validate the ranks given by group decision-making contexts. Checklist and benchmarking scenarios were provided to compare the proposed framework with an existing benchmark study. The proposed framework achieved a significant result in terms of selecting the best image dehazing algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3