Proportional Hybrid Mechanism for Population Based Feature Selection Algorithm

Author:

Wang Pin1,Li Yongming1,Chen Bohan1,Hu Xianling1,Yan Jin1,Xia Yu1,Yang Jie2

Affiliation:

1. College of Communication Engineering, Chongqing University, Chongqing 400030, P. R. China

2. Chongqing Communication College, Chongqing 400035, P. R. China

Abstract

Feature selection is an important research field for pattern classification, data mining, etc. Population-based optimization algorithms (POA) have high parallelism and are widely used as search algorithm for feature selection. Population-based feature selection algorithms (PFSA) involve compromise between precision and time cost. In order to optimize the PFSA, the feature selection models need to be improved. Feature selection algorithms broadly fall into two categories: the filter model and the wrapper model. The filter model is fast but less precise; while the wrapper model is more precise but generally computationally more intensive. In this paper, we proposed a new mechanism — proportional hybrid mechanism (PHM) to combine the advantages of filter and wrapper models. The mechanism can be applied in PFSA to improve their performance. Genetic algorithm (GA) has been applied in many kinds of feature selection problems as search algorithm because of its high efficiency and implicit parallelism. Therefore, GAs are used in this paper. In order to validate the mechanism, seven datasets from university of California Irvine (UCI) database and artificial toy datasets are tested. The experiments are carried out for different GAs, classifiers, and evaluation criteria, the results show that with the introduction of PHM, the GA-based feature selection algorithm can be improved in both time cost and classification accuracy. Moreover, the comparison of GA-based, PSO-based and some other feature selection algorithms demonstrate that the PHM can be used in other population-based feature selection algorithms and obtain satisfying results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperspectral Image Classification using Digital Signature Comparison based Classifier;2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2022-04-23

2. Microarray cancer feature selection: Review, challenges and research directions;International Journal of Cognitive Computing in Engineering;2020-06

3. Computer-Aided Diagnosis and Staging of Pancreatic Cancer Based on CT Images;IEEE Access;2020

4. Feature selection with multi-view data: A survey;Information Fusion;2019-10

5. A Survey on Feature Selection;Procedia Computer Science;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3