Gabor frame multipliers and Parseval duals on the half real line

Author:

Yang Ming1,Li Yun-Zhang1ORCID

Affiliation:

1. School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, P. R. China

Abstract

Recently, Gabor analysis on locally compact abelian (LCA) groups has become the focus of an active research. In practice, the time variable cannot be negative. The half real line [Formula: see text] is an LCA group under multiplication and the usual topology, with the Haar measure [Formula: see text]. This paper addresses Gabor frame multipliers and Parseval duals for [Formula: see text]. We introduce and characterize Gabor frame multipliers and Parseval Gabor frame multipliers based on Zak transform matrices. Our Zak transform matrix is essentially different from the conventional Zibulski–Zeevi matrix. It allows us to define Gabor frame generators by designing suitable matrix-valued functions of finite size. We also prove that an arbitrary Gabor frame [Formula: see text] admits a Parseval dual frame/tight dual frame whenever [Formula: see text] are rational numbers not greater than [Formula: see text].

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3