Cell-filtering-based multi-scale Shannon–Cosine wavelet denoising method for locust slice images

Author:

Mei Shenghan1,Liu Xiaochun1,Mei Shuli2ORCID

Affiliation:

1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China

2. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, P. R. China

Abstract

The locust slice images have all the features such as strong self-similarity, piecewise smoothness and nonlinear texture structure. Multi-scale interpolation operator is an effective tool to describe such structures, but it cannot overcome the influence of noise on images. Therefore, this research designed the Shannon–Cosine wavelet which possesses all the excellent properties such as interpolation, smoothness, compact support and normalization, then constructing multi-scale wavelet interpolative operator, the operator can be applied to decompose and reconstruct the images adaptively. Combining the operator with the local filter operator (mean and median), a multi-scale Shannon–Cosine wavelet denoising algorithm based on cell filtering is constructed in this research. The algorithm overcomes the disadvantages of multi-scale interpolation wavelet, which is only suitable for describing smooth signals, and realizes multi-scale noise reduction of locust slice images. The experimental results show that the proposed method can keep all kinds of texture structures in the slice image of locust. In the experiments, the locust slice images with mixture noise of Gaussian and salt–pepper are taken as examples to compare the performances of the proposed method and other typical denoising methods. The experimental results show that the Peak Signal-To-Noise Ratio (PSNR) of the denoised images obtained by the proposed method is greater 27.3%, 24.6%, 2.94%, 22.9% than Weiner filter, wavelet transform method, median and average filtering, respectively; and the Structural Similarity Index (SSIM) for measuring image quality is greater 31.1%, 31.3%, 15.5%, 10.2% than other four methods, respectively. As the variance of Gaussian white noise increases from 0.02 to 0.1, the values of PSNR and SSIM obtained by the proposed method only decrease by 11.94% and 13.33%, respectively, which are much less than other 4 methods. This shows that the proposed method possesses stronger adaptability.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3