Affiliation:
1. Fast Capture and Real-time Image Processing Technology Lab, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
2. University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Abstract
LSS-Target (the Low altitude, Slow speed and Small Target) is likely to be a threat to the observation platform, thus infrared LSS-Target detection is an urgent task. LSS-Target is a challenging issue due to the low Signal-to-Noise Ratio (SNR) and sophisticated background. Motivated by the analysis of infrared imaging characteristics, this paper proposes a novel fusion method for IR LSS-Target detection with complex urban background, which is suitable for precise guidance and self defense. First, an adaptive threshold segmentation based on accumulative histogram and maximum likelihood estimation are utilized to eliminate the clutter and improve SNR of the initial image. Second, a template is set up to identify the seed points in the image. Third, a constrained four criteria region growth algorithm is performed to separate the entire regions. Finally, the confidence measure is constructed, which can eliminate false targets and the background edges. Experimental results show that the method in this paper can screen out the real LSS-Target in real time with high accuracy under sophisticated background.
Funder
Supported by National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献