Single depth map super-resolution via a deep feedback network

Author:

Wu Guoliang12ORCID,Wang Yanjie1,Li Shi3

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China

2. University of Chinese Academy of Sciences, Beijing 100049, P. R. China

3. CPEEC Electric Power Technical Services Company, Daqing 163711, P. R. China

Abstract

Existing depth map-based super-resolution (SR) methods cannot achieve satisfactory results in depth map detail restoration. For example, boundaries of the depth map are always difficult to reconstruct effectively from the low-resolution (LR) guided depth map particularly at big magnification factors. In this paper, we present a novel super-resolution method for single depth map by introducing a deep feedback network (DFN), which can effectively enhance the feature representations at depth boundaries that utilize iterative up-sampling and down-sampling operations, building a deep feedback mechanism by projecting high-resolution (HR) representations to low-resolution spatial domain and then back-projecting to high-resolution spatial domain. The deep feedback (DF) block imitates the process of image degradation and reconstruction iteratively. The rich intermediate high-resolution features effectively tackle the problem of depth boundary ambiguity in depth map super-resolution. Extensive experimental results on the benchmark datasets show that our proposed DFN outperforms the state-of-the-art methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3