Affiliation:
1. Department of Computer Engineering, University of Balamand, P.O. Box 100, Elkoura, Lebanon
Abstract
Handwriting recognition is a very active research in the machine learning community. In this paper, we tackled two important applications: handwritten digit recognition and Signature verification using convolution neural network (CNN). Signature is one of the most popular personal attributes for authentication. It is basic, shabby and adequate to individuals, official associations and courts. This paper focuses on offline signature verification (SV). It is a kind of a classification problem, which classifies the signature as genuine, or forgery. We use CNN in two types of datasets: the MNIST database, and UTSIG database. In order to obtain better accuracy, we propose to preprocess the data in the wavelet domain and in the Gabor filter combining the outputs of both CNN. This combination resulted in higher recognition accuracy compared to other techniques.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献