Affiliation:
1. Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
Abstract
The concept of [Formula: see text]-frames was recently introduced by Găvruta7 in Hilbert spaces to study atomic systems with respect to a bounded linear operator. Let [Formula: see text] be a unital [Formula: see text]-algebra, [Formula: see text] be finitely or countably generated Hilbert [Formula: see text]-modules, and [Formula: see text] be adjointable operators from [Formula: see text] to [Formula: see text]. In this paper, we study a class of [Formula: see text]-bounded operators and [Formula: see text]-operator frames for [Formula: see text]. We also prove that the pseudo-inverse of [Formula: see text] exists if and only if [Formula: see text] has closed range. We extend some known results about the pseudo-inverses acting on Hilbert spaces in the context of Hilbert [Formula: see text]-modules. Further, we also present some perturbation results for [Formula: see text]-operator frames in [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献