An improvement for the automatic classification method for ultrasound images used on CNN

Author:

Avazov Kuldoshbay1,Abdusalomov Akmalbek1,Mukhiddinov Mukhriddin1,Baratov Nodirbek1,Makhmudov Fazliddin1,Im Cho Young2

Affiliation:

1. Department of IT Convergence Engineering, Gachon University, Sujeong-Gu, Seongnam-Si,Gyeonggi-Do, 461-701, Korea

2. Department of Computer Engineering, Gachon University, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 461-701, Korea

Abstract

It is no secret today that quality software has a higher superiority than leading technology solutions in computer vision. Remarkable advancement has been achieved in ultrasound image classification, essentially because of the availability of large-scale annotated datasets and deep convolutional neural networks (CNN). Applying CNN in the sphere of medicine is also becoming an active and attractive research area for researchers. In this paper, we introduce an efficient method for the classification of fetal ultrasound images using CNN. To classify these images, we collected four types of fetal ultrasound images from hospitals and internet sources. We first analyze and evaluate various CNN models such as AlexNet, Inception_v3, and MobileNet_v1 for training and testing. Then, the results of these CNN models are quantitatively compared with the proposed model in accuracy and speed. The results show that the proposed classification method can be recognized faster without compromising performance and adjust the ultrasound image parameters quickly and automatically. The proposed CNN model’s weight size is less than 1[Formula: see text]Mb and can be used on mobile or embedded operating systems. We also developed and tested the application on the Android operating system-based mobile device.

Funder

Information Technology Research Center

NRF

KATS

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3