Jump detection in high-frequency financial data using wavelets

Author:

Pinto Mateus Gonzalez de Freitas1ORCID,Marques Guilherme de Oliveira Lima C.2,Chiann Chang1

Affiliation:

1. Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil

2. Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Brazil

Abstract

The presence of spikes or cusps in high-frequency return series might generate problems in terms of inference and estimation of the parameters in volatility models. For example, the presence of jumps in a time series can influence sample autocorrelations, which can cause misidentification or generate spurious ARCH effects. On the other hand, these jumps might also hide relevant heteroskedastic behavior of the dependence structure of a series, leading to identification issues and a poorer fit to a model. This paper proposes a wavelet-shrinkage method to separate out jumps in high-frequency financial series, fitting a suitable model that accounts for its stylized facts. We also perform simulation studies to assess the effectiveness of the proposed method, in addition to illustrating the effect of the jumps in time series. Lastly, we use the methodology to model real high-frequency time series of stocks traded on the Brazilian Stock Exchange and OTC and a series of cryptocurrencies trades.

Funder

Fundaçoã de Amparo à Pesquisa do Estado de São Paulo

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A maximum-likelihood-based approach to estimate the long memory parameter using fractional spline wavelets;Signal Processing;2024-09

2. Identifying jumps in high-frequency time series by wavelets;International Journal of Wavelets, Multiresolution and Information Processing;2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3