Differentially private distributed logistic regression with the objective function perturbation

Author:

Yang Haibo1,Ji Yulong1,Pan Yanfeng1,Zou Bin1ORCID,Fu Yingxiong1

Affiliation:

1. School of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei, University, Wuhan 430062, P. R. China

Abstract

Distributed learning is a very effective divide-and-conquer strategy for dealing with big data. As distributed learning algorithms become more and more mature, network security issues including the risk of privacy disclosure of personal sensitive data, have attracted high attention and vigilance. Differentially private is an important method that maximizes the accuracy of a data query while minimizing the chance of identifying its records when querying from the given data. The known differentially private distributed learning algorithms are based on variable perturbation, but the variable perturbation method may be non-convergence and the experimental results usually have large deviations. Therefore, in this paper, we consider differentially private distributed learning algorithm based on objective function perturbation. We first propose a new distributed logistic regression algorithm based on objective function perturbation (DLR-OFP). We prove that the proposed DLR-OFP satisfies differentially private, and obtain its fast convergence rate by introducing a new acceleration factor for the gradient descent method. The numerical experiments based on benchmark data show that the proposed DLR-OFP algorithm has fast convergence rate and better privacy protection ability.

Funder

Open Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province

National Key Research and Development Program of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3