The optimization of parallel convolutional RBM based on Spark

Author:

Jiang Yun1,Zhuo Junyu2,Zhang Juan2,Xiao Xiao2

Affiliation:

1. College of Computer Science and Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou, GanSu 730070, P. R. China

2. 967 Anning East Road, Lanzhou, GanSu 730070, P. R. China

Abstract

With the extensive attention and research of the scholars in deep learning, the convolutional restricted Boltzmann machine (CRBM) model based on restricted Boltzmann machine (RBM) is widely used in image recognition, speech recognition, etc. However, time consuming training still seems to be an unneglectable issue. To solve this problem, this paper mainly uses optimized parallel CRBM based on Spark, and proposes a parallel comparison divergence algorithm based on Spark and uses it to train the CRBM model to improve the training speed. The experiments show that the method is faster than traditional sequential algorithm. We train the CRBM with the method and apply it to breast X-ray image classification. The experiments show that it can improve the precision and the speed of training compared with traditional algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Automatic Classification Pipeline for the Complex Synaptic Structure Based on Deep Learning;Journal of Systems Science and Complexity;2022-08

2. A Video Parallel Retrieval Method Based on Deep Hash;Simulation Tools and Techniques;2022

3. Complementary Convolutional Restricted Boltzmann Machine and Its Applications in Image Recognition;Data Mining and Big Data;2022

4. Co-evolution-based parameter learning for remote sensing scene classification;International Journal of Wavelets, Multiresolution and Information Processing;2021-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3