An appropriate thresholding method of wavelet denoising for dropping ambient noise

Author:

Il Kim Kyong1,Hwan Ri Ui1,Pil Chon Bong1

Affiliation:

1. Institute of Electronic Material, Academy of Ultramodern Science, Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, DPR of Korea

Abstract

For the non-stationary signal denoising, an effective method for dropping ambient noise is based on discrete wavelet transform. Also, in order to minimize the loss of useful signal and get high SNR in the wavelet denoising, it is very important that the thresholding is suitable for the characteristics of signal. In this paper, we propose new thresholding method to reduce an ambient noise and to detect effectively the useful signal. First, we analyze four kinds of previous wavelet threshold functions (Hard, Soft, Garrote and Hyperbola) and propose new wavelet threshold function compromised between Garrote and Hyperbola threshold functions. Next, a threshold value is selected by value to reduce exponentially according to the wavelet decomposition level. We also analyze a continuity and monotonicity, and prove the logic of new threshold function. The results of theoretical analysis show that new threshold function solves the problems of constant error and discontinuity of previous threshold functions, and minimizes the information loss of useful signal. The results of experiment show that SNR of new thresholding method is highest and RMSE and Entropy are smallest. The results of theoretical analysis and experiment show that new thresholding method is more appropriate to wavelet denoising for dropping ambient noise than previous methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3