AUTOMATICALLY DETECTING "SIGNIFICANT EVENTS" ON SenseCam

Author:

LI NA1,CRANE MARTIN1,RUSKIN HEATHER J.1

Affiliation:

1. School of Computing, Dublin City University, Gasnevin 9, Dublin, Ireland

Abstract

SenseCam is an effective memory-aid device that can automatically record images and other data from the wearer's whole day. The main issue is that, while SenseCam produces a sizeable collection of images over the time period, the vast quantity of captured data contains a large percentage of routine events, which are of little interest to review. In this article, the aim is to detect "Significant Events" for the wearers. We use several time series analysis methods such as Detrended Fluctuation Analysis (DFA), Eigenvalue dynamics and Wavelet Correlations to analyse the multiple time series generated by the SenseCam. We show that Detrended Fluctuation Analysis exposes a strong long-range correlation relationship in SenseCam collections. Maximum Overlap Discrete Wavelet Transform (MODWT) was used to calculate equal-time Correlation Matrices over different time scales and then explore the granularity of the largest eigenvalue and changes of the ratio of the sub-dominant eigenvalue spectrum dynamics over sliding time windows. By examination of the eigenspectrum, we show that these approaches enable detection of major events in the time SenseCam recording, with MODWT also providing useful insight on details of major events. We suggest that some wavelet scales (e.g., 8 minutes–16 minutes) have the potential to identify distinct events or activities.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Received Total Wideband Power Data Analysis;Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems - MSWIM '19;2019

2. Toward Storytelling From Visual Lifelogging: An Overview;IEEE Transactions on Human-Machine Systems;2017

3. NTCIR-12 Lifelog Data Analytics;Proceedings of the first Workshop on Lifelogging Tools and Applications;2016-10-16

4. Finding Motifs in Large Personal Lifelogs;Proceedings of the 7th Augmented Human International Conference 2016;2016-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3