A general theory for subspace-sparse recovery

Author:

Li Ningning1,Chen Wengu1ORCID,Ge Huanmin2

Affiliation:

1. Institute of Applied Physics and Computational Mathematics, Beijing 100088, P. R. China

2. Sports Engineering College, Beijing Sport University, Beijing, 100088, P. R. China

Abstract

High-dimensional data that often lie in low-dimensional subspaces are ubiquitous in many fields of signal and image processing, pattern recognition, machine learning, etc. Finding sparse representations of data points in a dictionary built by using the collection of data helps to study low-dimensional subspaces. In this paper, we consider the problem of subspace-sparse representation for data composed of two distinct features. Applying different measures to the coefficients of the two distinct features under different dictionaries makes the model used in this paper more general. We present theoretical guarantee for subspace-sparse representation under conditions on the subspaces and data. The program used in this paper can handle data with structured corruption, missing entries, sparse outliers and random bounded noise well.

Funder

NSF of China

CAEP Foundation

Key Laboratory of Computational Physics Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3