WAD-CMSN: Wasserstein distance-based cross-modal semantic network for zero-shot sketch-based image retrieval

Author:

Xu Guanglong1,Hu Zhensheng2,Cai Jia3ORCID

Affiliation:

1. School of Economics and Finance, South China University of Technology, Guangzhou 510006, P. R. China

2. School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China

3. School of Digital Economics, Guangdong University of Finance and Economics, Guangzhou 510320, P. R. China

Abstract

Zero-shot sketch-based image retrieval (ZSSBIR) aims at retrieving natural images given free hand-drawn sketches that may not appear during training. Previous approaches used semantic aligned sketch-image pairs or utilized memory expensive fusion layer for projecting the visual information to a low-dimensional subspace, which ignores the significant heterogeneous cross-domain discrepancy between highly abstract sketch and relevant image. This may yield poor performance in the training phase. To tackle this issue and overcome this drawback, we propose a Wasserstein distance-based cross-modal semantic network (WAD-CMSN) for ZSSBIR. Specifically, it first projects the visual information of each branch (sketch, image) to a common low-dimensional semantic subspace via Wasserstein distance in an adversarial training manner. Furthermore, a novel identity matching loss is employed to select useful features, which can not only capture complete semantic knowledge, but also alleviate the over-fitting phenomenon caused by the WAD-CMSN model. Experimental results on the challenging Sketchy (Extended) and TU-Berlin (Extended) datasets indicate the effectiveness of the proposed WAD-CMSN model over several competitors.

Funder

National Natural Science Foundation of China

Special Support Plan for High-Level Talents of Guangdong Province

Guangdong Basic and Applied Basic Research Foundation

Foundation of Guangdong Educational Committee

Project of Guangdong Province Innovative Team

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3