Affiliation:
1. Department of Computer Science and Engineering, Jaypee University of Engineering and Technology, Raghogarh, Guna 473226, Madhya Pradesh, India
Abstract
Bank NIFTY index prediction is a challenging problem, which dictates that the market is highly stochastic, and there are temporally dependent predictions from chaotic data. Thus, the development of an effective prediction model is required as the basic necessity and in this paper, the Bank NIFTY index prediction system is developed using the Deep Convolutional Long Short-Term Memory (Deep-ConvLSTM) model that effectively predicts the Bank NIFTY index. The overall procedure of the proposed approach involves three steps. The initial step is feature extraction, the second step is clustering, and the tertiary step is the prediction. The input data is fed to the feature extraction step. Here, the feature extraction is performed based on the technical indicators, and then the clustering is done based on modified Sparse Fuzzy [Formula: see text]-Means (FCM) in order to find the effective features. Finally, the prediction is carried out based on Deep-ConvLSTM model, which is trained optimally using the proposed Adaptive-Rider-Monarch Butterfly Optimization (Adaptive-Rider-MBO) for performing accurate prediction. The performance of the Bank NIFTY index prediction based on Adaptive-Rider-MBO is evaluated based on Mean Square Error (MSE) and Root Mean Square Error (RMSE). The proposed method achieves the minimal MSE of 2.010 and minimal RMSE of 1.418 based on the NIFTY Midcap 100 index.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Long short-term memory network-based wastewater quality prediction model with sparrow search algorithm;International Journal of Wavelets, Multiresolution and Information Processing;2023-04-27
2. LSTM Wastewater Quality Prediction Based on Attention Mechanism;2021 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR);2021-12-04