Functional incremental least square regression algorithm

Author:

Shen Yujing1ORCID,Zou Kunjin2ORCID,Zou Bin3ORCID,Xu Jie4ORCID,Zeng Jingjing5ORCID

Affiliation:

1. Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, P. R. China

2. Manchester Metropolitan Joint Institute, Hubei University, Wuhan 430062, P. R. China

3. Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan 430062, P. R. China

4. Faculty of Computer Science and Information Engineering, Hubei Key Laboratory of Big Data Intelligent Analysis and Application (Hubei University), Hubei University, Wuhan 430062, P. R. China

5. Faculty of Mathematics, Wuhan Institute of Technology, Wuhan 430205, P. R. China

Abstract

Functional linear regression is one of the main modeling tools for working with functional data. Since functional data are usually stream data essentially and there are some noises in functional data. Many numerical research studies of machine learning indicate that the noise samples not only increase the amount of storage space, but also affect the performance of algorithm. Therefore, in this paper we consider a new learning strategy by introducing incremental learning, Markov sampling for functional linear regression and propose a novel functional incremental linear square regression algorithm based on Markov sampling (FILSR-MS). To have a better understanding of the proposed FILSR-MS, we not only estimate the generalization bound of the proposed algorithm and establish the fast learning rate, but also present some useful discussions. The performance of the proposed algorithm is validated by the numerical experiments for benchmark repository.

Funder

Chongqing Municipal Key Research and Development Program of China

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3