Minimax robust designs for wavelet estimation of nonparametric regression models with autocorrelated errors

Author:

Selvaratnam Selvakkadunko1,Oyet Alwell Julius1

Affiliation:

1. Department of Mathematics and Statistics, Memorial University, St. John’s, NL, A1C 5S7, Canada

Abstract

We discuss the construction of designs for estimation of nonparametric regression models with autocorrelated errors when the mean response is to be approximated by a finite order linear combination of dilated and translated versions of the Daubechies wavelet bases with four vanishing moments. We assume that the parameters of the resulting model will be estimated by weighted least squares (WLS) or by generalized least squares (GLS). The bias induced by the unused components of the wavelet bases, in the linear approximation, then inflates the natural variation of the WLS and GLS estimates. We therefore construct our designs by minimizing the maximum value of the average mean squared error (AMSE). Such designs are said to be robust in the minimax sense. Our illustrative examples are constructed by using the simulated annealing algorithm to select an optimal [Formula: see text]-point design, which are integers, from a grid of possible values of the explanatory or design variable [Formula: see text]. We found that the integer-valued designs we constructed based on GLS estimation, have smaller minimum loss when compared to the designs for WLS or ordinary least squares (OLS) estimation, except when the correlation parameter [Formula: see text] approaches 1.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3