Online sparse sliced inverse regression for high-dimensional streaming data

Author:

Xu Jianjun1,Cui Wenquan1ORCID,Cheng Haoyang1ORCID

Affiliation:

1. International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China

Abstract

Due to the demand for tackling the problem of streaming data with high-dimensional covarites, we propose an online sparse sliced inverse regression (OSSIR) method for online sufficient dimension reduction (SDR). The existing online SDR methods focus on the case when [Formula: see text] (dimension of covariates) is small. In this paper, we adapt the sparse sliced inverse regression to cope with high-dimensional streaming data where the dimension [Formula: see text] is large. There are two important steps in our method, one is to extend the online principal component analysis to iteratively obtain the eigenvalues and eigenvectors of the kernel matrix, the other is to use the truncated gradient to perform online [Formula: see text] regularization. Theoretical properties of the proposed online learner are established. By comparing with several existing methods in simulations and real data applications, we demonstrate the effectiveness and efficiency of our method.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3