The linear canonical wavelet transform on some function spaces

Author:

Guo Yong12,Li Bing-Zhao12

Affiliation:

1. School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China

2. Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, P. R. China

Abstract

It is well known that the domain of Fourier transform (FT) can be extended to the Schwartz space [Formula: see text] for convenience. As a generation of FT, it is necessary to detect the linear canonical transform (LCT) on a new space for obtaining the similar properties like FT on [Formula: see text]. Therefore, a space [Formula: see text] generalized from [Formula: see text] is introduced firstly, and further we prove that LCT is a homeomorphism from [Formula: see text] onto itself. The linear canonical wavelet transform (LCWT) is a newly proposed transform based on the convolution theorem in LCT domain. Moreover, we propose an equivalent definition of LCWT associated with LCT and further study some properties of LCWT on [Formula: see text]. Based on these properties, we finally prove that LCWT is a linear continuous operator on the spaces of [Formula: see text] and [Formula: see text].

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clifford‐valued linear canonical wavelet transform and the corresponding uncertainty principles;Mathematical Methods in the Applied Sciences;2024-09-11

2. Linear Canonical Bessel operator and wavelet packet;Boletín de la Sociedad Matemática Mexicana;2024-05-31

3. Special affine Fourier transform of tempered distributions and pseudo-differential operators;Integral Transforms and Special Functions;2024-05-21

4. New convolution and correlation theorems for the linear canonical wavelet transform;Fifteenth International Conference on Signal Processing Systems (ICSPS 2023);2024-03-28

5. Linear canonical Fourier–Bessel wavelet transform: properties and inequalities;Integral Transforms and Special Functions;2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3