Affiliation:
1. Physics Department, Faculty of Science, Al al-Bayt University, P. O. Box 130040, Mafraq 25113, Jordan
Abstract
The method of impulse approximation is used to check the validity of the first-order optical potential for the elastic scattering problem of the neutron on the bound system, namely, [Formula: see text] and [Formula: see text]at incident neutron energies of 155 and 225[Formula: see text]MeV. The optical potential is derived as the first-order term within the spectator expansion of a nonrelativistic multiple scattering terms using the Lippmann–Schwinger equation. The Modern realistic two-body potential ArgonneV18 in the momentum space was used as input in the Lippmann–Schwinger equation. The obtained results for the elastic differential cross-sections are in a good agreement with the experimental data taken from EXFOR Database for all studied targets at neutron energy above 200[Formula: see text]MeV. As the neutron energy decreases down to approximately 155[Formula: see text]MeV, the discrepancies with experimental data appear, which is in accordance with the impulse approximation formalism.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献