NONADIABATIC TRANSITION OF THE FISSIONING NUCLEUS AT SCISSION: THE TIME SCALE

Author:

CARJAN N.12,RIZEA M.2

Affiliation:

1. Centre d'Etudes Nucléaires de Bordeaux – Gradignan, UMR 5797, CNRS/IN2P3 – Université Bordeaux 1, BP 120, 33175 Gradignan Cedex, France

2. National Institute of Physics and Nuclear Engineering, "Horia Hulubei", P. O. Box MG-6, 077125, Bucharest-Magurele, Romania

Abstract

A time-dependent approach to the scission process, i.e., to the transition from two fragments connected by a thin neck (deformation αi) to two separated fragments (deformation αf) is presented. This transition is supposed to take place in a very short time interval ΔT. Our approach follows the evolution from αi to αf of all occupied neutron states by solving numerically the two-dimensional time-dependent Schrödinger equation with time-dependent potential. Calculations are performed for mass divisions from AL = 70 to AL = 118(AL being the light fragment mass) taking into account all neutron states (Ω = 1/2, 3/2, …, 11/2) that are bound in 236 U at αi. ΔT is taken as parameter having values from 0.25×10-22 to 6×10-22 s. The resulting scission neutron multiplicities ν sc and primary fragments' excitation energies [Formula: see text] are compared with those obtained in the frame of the sudden approximation (ΔT = 0). As expected, shorter is the transition time more excited are the fragments and more neutrons are emitted, the sudden approximation being an upper limit. For ΔT = 10-22 which is a realistic value, the time dependent results are 20% below this limit. For transition times longer than 6×10-22 s the adiabatic limit is reached: No scission neutrons are emitted anymore and the excitation energy at αf is negligible.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3