Affiliation:
1. Department of Physics, Faculty of Science, University of Mazandaran, P. O. Box 47415-416, Babolsar, Iran
Abstract
In this study, the effect of the surface symmetry energy on the neutron skin thickness and division of it into the bulk and surface parts are investigated by determination of the symmetry energy coefficient [Formula: see text] of finite nuclei. We demonstrate the importance of the isospin asymmetry distribution in the symmetry energy coefficient of finite nuclei at the surface region. We attempt to find out how different surface symmetry energies may affect alpha decay half-life. The Skyrme interactions are used to describe the neutron and proton density distributions and to calculate the symmetry energy coefficient [Formula: see text] of four nuclei and the surface symmetry energy. The chosen Skyrme interactions can produce the binding energy and root-mean-square charge radii of both mother and daughter nuclei. We single out the spherical isotones of [Formula: see text] named [Formula: see text]Pb, [Formula: see text]Po, [Formula: see text]Rn and [Formula: see text]Ra for daughter nuclei and explore the dependence of the bulk and surface contributions on the surface symmetry energy. The half-life of mother nuclei, i.e., [Formula: see text]Po, [Formula: see text]Rn, [Formula: see text]Ra and [Formula: see text]Th, is employed to investigate the extent to which it is affected by different surface symmetry energies. The calculated half-lives show a downward tendency for different surface symmetry energies which can be caused by various neutron skin thicknesses.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Nuclear and High Energy Physics