Study of the dependence of alpha decay half-life on the surface symmetry energy

Author:

Nejati S.1ORCID,Ghodsi O. N.1

Affiliation:

1. Department of Physics, Faculty of Science, University of Mazandaran, P. O. Box 47415-416, Babolsar, Iran

Abstract

In this study, the effect of the surface symmetry energy on the neutron skin thickness and division of it into the bulk and surface parts are investigated by determination of the symmetry energy coefficient [Formula: see text] of finite nuclei. We demonstrate the importance of the isospin asymmetry distribution in the symmetry energy coefficient of finite nuclei at the surface region. We attempt to find out how different surface symmetry energies may affect alpha decay half-life. The Skyrme interactions are used to describe the neutron and proton density distributions and to calculate the symmetry energy coefficient [Formula: see text] of four nuclei and the surface symmetry energy. The chosen Skyrme interactions can produce the binding energy and root-mean-square charge radii of both mother and daughter nuclei. We single out the spherical isotones of [Formula: see text] named [Formula: see text]Pb, [Formula: see text]Po, [Formula: see text]Rn and [Formula: see text]Ra for daughter nuclei and explore the dependence of the bulk and surface contributions on the surface symmetry energy. The half-life of mother nuclei, i.e., [Formula: see text]Po, [Formula: see text]Rn, [Formula: see text]Ra and [Formula: see text]Th, is employed to investigate the extent to which it is affected by different surface symmetry energies. The calculated half-lives show a downward tendency for different surface symmetry energies which can be caused by various neutron skin thicknesses.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3