Implications of occupancy of 2s1/2 state in sd-shell within RMF+BCS approach

Author:

Saxena G.1,Kumawat M.12,Kaushik M.3,Singh U. K.2,Jain S. K.2,Singh S. Somorendro4,Aggarwal Mamta5

Affiliation:

1. Department of Physics, Govt. Women Engineering College, Ajmer 305002, India

2. Department of Physics, School of Basic Sciences, Manipal University, Jaipur 303007, India

3. Department of Physics, Shankara Institute of Technology, Kukas, Jaipur 302028, India

4. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India

5. Department of Physics, University of Mumbai, Kalina Campus, Mumbai 400098, India

Abstract

We employ the relativistic mean-field plus BCS (RMF+BCS) approach to study the behavior of [Formula: see text]-shell by investigating in detail the single particle energies, and proton and neutron density profiles along with the deformations and radii of even–even nuclei. Emergence of new shell closure, weakly bound structure and most recent phenomenon of bubble structure are reported in the [Formula: see text]-shell. [Formula: see text]C, [Formula: see text]O and [Formula: see text]S are found to have a weakly bound structure due to particle occupancy in 2[Formula: see text] state. On the other hand [Formula: see text]O, [Formula: see text]Ca and [Formula: see text]Si are found with depleted central density due to the unoccupied 2[Formula: see text] state and hence they are the potential candidates of bubble structure. [Formula: see text]C and [Formula: see text]O emerge as doubly magic with [Formula: see text] in accord with the recent experiments and [Formula: see text]S emerges as a new proton magic nucleus with [Formula: see text]. [Formula: see text] and [Formula: see text] are predicted as magic numbers in doubly magic [Formula: see text]O, [Formula: see text]Ca and [Formula: see text]Si, respectively. These results are found in agreement with the recent experiments and have consistent with the other parameters of RMF and other theories.

Funder

Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3