Affiliation:
1. Sciences Faculty, Physics Group, Payame Noor University, P. O. Box 19395-4697, Tehran, Iran
Abstract
In this study, we have investigated the [Formula: see text]-decay chains of even–even superheavy nuclei [Formula: see text] in the range of [Formula: see text]. The Hartree–Fock–Bogoliubov model is used to calculate the binding energy of these superheavy nuclei. We have included the so-called SkP skyrme function as an effective force and the quadruple deformations. The semi-empirical formulas are used in the reproducing [Formula: see text]-decay and spontaneous fission half-lives of these superheavy nuclei. By studying the decay chains of the Z = 120 isotopes and comparing them with the half-lives of spontaneous fission, it is predicted that the elements [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text],[Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] are more stable than the neighboring isotopes in their parent [Formula: see text]-decay chain. The corresponding neutron and proton numbers represent magical behavior that is in agreement with the numbers predicted before. In this range, the predicted nuclei are found to have large enough half-lives to synthesize them in a laboratory.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Nuclear and High Energy Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献