DATA EVALUATION ACQUIRED TALYS 1.0 CODE TO PRODUCE 111In FROM VARIOUS ACCELERATOR-BASED REACTIONS

Author:

ALIPOOR ZAHRA1,GHOLAMZADEH ZOHREH1,SADEGHI MAHDI1,SEYYEDI SOLALEH2,AREF MORTEZA3

Affiliation:

1. Agricultural, Medical & Industrial Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485/498, Karaj, Tehran, Iran

2. Department of Nuclear Engineering, Research and Science Branch, Islamic Azad University, Tehran, Iran

3. Physics Faculty, University of Zanjan, P. O. Box 451/313, Zanjan, Iran

Abstract

The Indium-111 physical-decay parameters as a β-emitter radionuclide show some potential for radiodiagnostic and radiotherapeutic purposes. Medical investigators have shown that 111 In is an important radionuclide for locating and imaging certain tumors, visualization of the lymphatic system and thousands of labeling reactions have been suggested. The TALYS 1.0 code was used here to calculate excitation functions of 112/114–118 Sn+p , 110 Cd +3 He , 109 Ag +3 He , 111–114 Cd+p , 110/111 Cd+d , 109 Ag +α to produce 111 In using low and medium energy accelerators. Calculations were performed up to 200 MeV. Appropriate target thicknesses have been assumed based on energy loss calculations with the SRIM code. Theoretical integral yields for all the latter reactions were calculated. The TALYS 1.0 code predicts that the production of a few curies of 111 In is feasible using a target of isotopically highly enriched 112 Cd and a proton energy between 12 and 25 MeV with a production rate as 248.97 MBq·μA-1 · h-1. Minimum impurities shall be produced during the proton irradiation of an enriched 111 Cd target yielding a production rate for 111 In of 67.52 MBq· μA-1 · h-1.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3