Affiliation:
1. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
Abstract
The deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc) has been proved as one of the best models to probe the exotic structures in deformed nuclei. In DRHBc, the potentials and densities are expressed in terms of the multipole expansion with Legendre polynomials, the dependence on which has only been touched for light nuclei so far. In this paper, taking a light nucleus [Formula: see text]Ne and a heavy nucleus [Formula: see text]U as examples, we investigated the dependence on the multipole expansion of the potentials and densities in DRHBc. It is shown that the total energy converges well with the expansion truncation both in the absence of and presence of the pairing correlation, either in the ground state or at a constrained quadrupole deformation. It is found that to reach the same accuracy of the total energy, even to the same relative accuracy by percent, a larger truncation is required by a heavy nucleus than a light one. The dependence of the total energy on the truncation increases with deformation. By decompositions of the neutron density distribution, it is shown that a higher-order component has a smaller contribution. With the increase of deformation, the high-order components get larger, while at the same deformation, the high-order components of a heavy nucleus play a more important role than that of a light one.
Funder
National Key R & D Program of China
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Nuclear and High Energy Physics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献