THE ROLE OF FERMI MOTION ON THE STRUCTURE FUNCTIONS OF 3He AND 3H NUCLEI IN THE QUARK EXCHANGE FRAMEWORK

Author:

MODARRES M.1,RASTI M.1

Affiliation:

1. Physics Department, University of Tehran, 1439955961 Tehran, Iran

Abstract

The quark exchange model and the full three-nucleon wave function in the configuration space are used to evaluate the role of Fermi motion on the structure functions (SFs) of helium-3 and tritium nuclei. The three-nucleon wave function is obtained from the solution of the Faddeev equations with the Malfliet–Tjon-type potential, by using the three-dimensional approach as a function of the magnitudes of the Jacobi momenta vectors and the angle between them. In this calculation, the initial valence quarks inputs are taken from the GRV's (Glück, Reya and Vogt) fitting procedure and the next-to-leading order (NLO) QCD calculation on [Formula: see text], which give a very good fit to the available experimental data in the (x, Q2)-plane. The role of Fermi motion on the EMC ratio of the SFs of 3 He and 3 H nuclei are analyzed through the NLO expansion of the nuclear wave function in the coordinate space. A good agreement between the calculated EMC ratios, the corresponding experimental data and the theoretical results is found. Finally, the ratios of the SFs of the neutron to the proton (with the isospin symmetry assumption) with and without the Fermi motion effect, are also calculated, and they are compared with the available experimental data. Our results show that the roles of the Fermi motion in the framework of the quark exchange model for the calculations of the nuclear SFs are important.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3