CHAOTIC PARAMETER λ IN HANBURY-BROWN–TWISS INTERFEROMETRY IN AN ANISOTROPIC BOSON GAS MODEL

Author:

LIU JIE1,RU PENG1,ZHANG WEI-NING12,WONG CHEUK-YIN3

Affiliation:

1. School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China

2. Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150006, P. R. China

3. Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

Abstract

Using one- and two-body density matrices, we calculate the spatial and momentum distributions, two-particle Hanbury-Brown–Twiss (HBT) correlation functions, and the chaotic parameter λ in HBT interferometry for the systems of boson gas within the harmonic oscillator potentials with anisotropic frequencies in transverse and longitudinal directions. The HBT chaotic parameter, which can be obtained by measuring the correlation functions at zero relative momentum of the particle pair, is related to the degree of Bose–Einstein condensation and thus the system environment. We investigate the effects of system temperature, particle number and the average momentum of the particle pair on the chaotic parameter. The value of λ decreases with the condensed fraction, f0. It is one for f0 = 0 and zero for f0 = 1. For a certain f0 between 0 and 1, we find that λ increases with the average momentum of the particle pair and decreases with the particle number of system. The results of λ are sensitive to the ratio, ν = ωzρ, of the frequencies in longitudinal and transverse directions. They are smaller for larger ν when ωρ is fixed. In the heavy-ion collisions at the Large Hadron Collider (LHC) energy the large identical pion multiplicity may possibly lead to a considerable Bose–Einstein condensation. Its effect on the chaotic parameter in two-pion interferometry is worth considering in earnest.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3