Affiliation:
1. Physics Department of Tianshui Normal University, Tianshui 741000, P. R. China
2. College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
Abstract
In this paper, we study the in-medium nucleon–nucleon (NN) cross-section by using the Dirac–Breuckner–Hartree–Fock approximation (DBHF) with T-matrix project technique for determining the nucleon self-energy. By solving Thompson equation for different partial-wave states separately, we find that the discrepancies of nucleon self-energies in various T-matrix project representations are dominated by the channels with smaller angular momentum. Although the cross-section is independent on the project of T-matrix, the medium suppression of the cross-section in various T-matrix representations are apparently different due to the self-consistency of DBHF calculation involving effect mass of nucleon as an iterative parameter. Our results also show that the cross-sections in the complete pseudovector (CPV) choices are larger than those obtained with both DBHF in the pseudoscalar (PS) choice and nonrelativistic Brueckner–Hartree–Fock with three-body force (BHF + 3BF), respectively. Further comparison shows that the neutron–proton (NP) cross-section within DBHF + PV approach, [Formula: see text], is approximately equal to and slightly larger than that evaluated with BHF + 3BF, [Formula: see text], while the neutron–neutron (NN) (or proton–proton (PP)) cross-section given by DBHF + PV method, [Formula: see text], being the closest to the cross-section calculated by using BHF without 3BF in the lower energy region. Additionally, the discrepancies of the in-medium nucleon–nucleon differential cross-section induced by different representations of T-matrix in DBHF are discussed for nuclear matter with different densities.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Nuclear and High Energy Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献