NUMBER-PROJECTED ELECTRIC QUADRUPOLE MOMENTS OF EVEN–EVEN PROTON-RICH NUCLEI IN THE ISOVECTOR PAIRING CASE

Author:

DOUICI M.12,ALLAL N. H.13,FELLAH M.13,BENHAMOUDA N.1,OUDIH M. R.1

Affiliation:

1. Laboratoire de Physique Théorique, Faculté de Physique, USTHB, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria

2. Institut des Sciences et Technologie, Centre Universitaire de Khemis Miliana, Route de Theniet-El-Had, 44225, Khemis-Miliana, Algeria

3. Centre de Recherche Nucléaire d'Alger, 2 Bd. Frantz Fanon, BP. 399 Alger-Gare, Algiers, Algeria

Abstract

An expression of the number-projected electric quadrupole moment Q2 has been established in the isovector pairing case using the SBCS discrete projection before variation method. It has been verified that this expression reduces to the pairing between like-particles one at the limit when the np pairing gap parameter Δ np goes to zero. The convergence of the projection method has been numerically tested and a fast convergence has been observed. The electric quadrupole moment has been numerically calculated for some even–even proton-rich nuclei such as 16 ≤ Z ≤ 56 and 0 ≤ (N-Z) ≤ 4. The single-particle energies and eigen-states used are those of a Woods–Saxon mean-field. The np pairing effect on Q2 has been studied either before and after the projection; it seems that it is somewhat small since the relative discrepancies do not exceed 12%. Moreover, the np pairing effect is roughly the same in both situations. However, it has been shown that this effect diminishes with increasing values of (N-Z). The projection effect on Q2 has also been studied when including, or not, the np pairing correlations. It appears that this effect is slightly less important in the np pairing case than when only the pairing between like-particles is considered.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3