Decay of heavy particles from Z = 125 superheavy nuclei in the region A = 295–325 using different versions of proximity potential

Author:

Santhosh K. P.1,Sukumaran Indu1

Affiliation:

1. School of Pure and Applied Physics, Kannur University, Swami Anandatheertha Campus, Payyanur 670327, Kerala, India

Abstract

Within the framework of Coulomb and proximity potential model (CPPM), the probable heavy particle decays from various isotopes of superheavy nuclei (SHN), [Formula: see text], within the range [Formula: see text]–[Formula: see text] have been studied using two versions of proximity potential; proximity 1977 and proximity 2000. The decay half lives evaluated using proximity 2000 is observed to be higher than the values obtained using proximity 1977. The effect of surface deformation on the decay half lives is studied using Coulomb and proximity potential for deformed nuclei (CPPMDN). As a result of the inclusion of deformation [Formula: see text], the penetrability of the decays are observed to be increased and accordingly the decay half lives are reduced. The estimated values are compared with other theoretical models, Universal curve (UNIV), Universal Decay law (UDL) and the scaling law of Horoi. The odd–even staggering (OES) effect is observed in the emission of odd mass clusters. An intriguing aspect of the study is the effect of the magicity at [Formula: see text] which is confirmed from the plot of [Formula: see text] against the neutron number of the daughter nuclei. Almost all the predicted half lives are favorable for experimental measurements. The Geiger–Nuttall (GN) plots and the Universal curve have been studied for various cluster emissions from various superheavy isotopes with [Formula: see text]. Finally, the linearity of the GN plot and the Universal curve of the heavy particle emissions very well established the strength of CPPM.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3