Study of giant dipole resonances for neodymium isotopes with an exciton model

Author:

Lattoofi Nabeel F.1ORCID,Alzubadi Ali A.2

Affiliation:

1. Department of Physics, College of Science, University of Anbar, Al-Anbar, Iraq

2. Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

The partial photonuclear [Formula: see text], pn) and [Formula: see text] and the total photonuclear cross-sections (the giant dipole resonance (GDR)) have been investigated theoretically for neodymium isotopes, namely [Formula: see text]Nd, using framework of the EMPIRE 3.2.2 code. The energy, width and cross-section parameters of the GDR used in our calculations have been investigated in this paper depending on the deformation parameters of nuclei. The calculated results have been compared with the experimental data and with those calculated using Lorentzian fitting parameters. Our calculations show a good agreement for all isotopes under study and give better results than the results calculated with Lorentzian parameters. Furthermore, the neutron number dependence of the total and partial photonuclear cross-sections has also been discussed. The results appear that the EMPIRE code used is a perfect tool for reproducing the splitting in the GDR for deformed [Formula: see text]Nd isotope in two distinct dipole modes which are perfectly consistent with the experimental results. It has also been shown that the present parameters are suitable parameters for reproducing the GDR for spherical, or nearly spherical, and the deformed ([Formula: see text]Nd) neodymium isotopes. The parameters have been indicating the small deformation in [Formula: see text]Nd, which cannot be shown by the Lorentzian fitting parameters.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3