High spin states of Zr isotopes around A = 80 mass region — A study on cold and hot rotating nuclei

Author:

Aggarwal Mamta1,Kaushik M.2,Saxena G.3

Affiliation:

1. Department of Physics, University of Mumbai, Kalina Campus, Mumbai 400098, India

2. S. S. Jain Subodh P. G. College, M. C. A. Institute, Rambagh Circle, Jaipur 302004, India

3. Department of Physics (H&S), Government Women Engineering College, Ajmer 305002, India

Abstract

High spin structure of Zr isotopes, in particular, around [Formula: see text] has been studied in yrast and nonyrast regions. Spin dependence of shapes for the yrast levels are investigated by employing Cranked Hartree–Fock–Bogoliubov (CHFB) theory using a [Formula: see text] model interaction and the calculations are in good accord with the experimental data. The nonyrast states are treated by incorporating temperature degree of freedom using the statistical theory (ST). Highly deformed prolate shapes dominate the nonrotating proton rich region at low temperatures (T) with coexisting oblate and prolate shapes in [Formula: see text]Zr. Hot rotating nuclei show highest deformation around [Formula: see text] among all the other Zr isotopes even at high temperatures. [Formula: see text]Zr exhibits interesting structural transitions, hence studied in detail in yrast and non yrast regions. Triaxiality predominates in both yrast and nearly yrast (low temperature) regions at low spins with transition to elongated shapes at mid spin values 30–38[Formula: see text] to highly deformed oblate shapes at higher spins. CHFB predicts a strong backbending effect at 32[Formula: see text] and 40[Formula: see text]. A shape coexistence between the rare shape phase of noncollective prolate and oblate is reported in [Formula: see text]Zr at low temperature and [Formula: see text]. Prolate shape phase disappears with increasing temperature and spin but the nucleus remains highly deformed (with [Formula: see text] at spin [Formula: see text]40[Formula: see text]) even at high temperatures of the order of 3–3.5[Formula: see text]MeV, hence a very promising candidate for GDR probes of nuclear shapes.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3