A theoretical study on the impact of centrifugal potential and fragment identification in the decay of compound nuclei (ACN = 60&100)

Author:

Sarkar Gayatri1,Kaur Amandeep23,Maiti Moumita1ORCID,Sharma Manoj K.3

Affiliation:

1. Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India

2. Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, Zagreb 10000, Croatia

3. School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, India

Abstract

Decay analysis of compound nuclei such as [Formula: see text] and [Formula: see text] formed in [Formula: see text]Ca and [Formula: see text]Ni reactions, respectively, is studied using two theoretical frameworks, dynamical cluster-decay model (DCM) and PACE4. To explore the decay dynamics in a relatively lighter mass region [Formula: see text], two more reactions are picked (i) [Formula: see text]Mg forming the [Formula: see text] compound nucleus, (ii) another one involving the odd mass projectile, [Formula: see text]. In DCM, the fusion excitation functions are calculated using sticking [Formula: see text] and nonsticking [Formula: see text] limits of the moment of inertia. For the chosen reactions, fusion cross-sections are equivalent to evaporation residue (ER) cross-sections [Formula: see text] as fission cross-sections are negligible. A lower magnitude of maximum angular momentum [Formula: see text] is obtained via the [Formula: see text] approach in comparison to the [Formula: see text] approach and the angular momentum obtained via the [Formula: see text] approach is closer to the experimental observations. The structure and magnitude of fragmentation potential and preformation probability [Formula: see text] depend on the choice of moment of inertia and the magnitude of angular momentum involved. Besides this, PACE4 is employed to address the fusion cross-section of chosen reactions. The most probable decay channel is identified using both DCM and PACE4 approaches.

Funder

Council of Scientific and Industrial Research,Human Resource Development Group

Department of Science and Technology, New Delhi, India

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3