Semiclassical and quantum shell-structure calculations of the moment of inertia

Author:

Gorpinchenko D. V.1,Magner A. G.1,Bartel J.2

Affiliation:

1. Institute for Nuclear Research, Prospekt Nauki 47, Kyiv 03028, Ukraine

2. Institut Pluridisciplinaire Hubert Curien, CNRS/IN2P3, Université de Strasbourg, 23 rue du Loess, 67000 Strasbourg, France

Abstract

Shell corrections to the moment of inertia (MI) are calculated for a Woods–Saxon potential of spheroidal shape and at different deformations. This model potential is chosen to have a large depth and a small surface diffuseness which makes it resemble the analytically solved spheroidal cavity in the semiclassical approximation. For the consistent statistical-equilibrium collective rotations under consideration here, the MI is obtained within the cranking model in an approach which goes beyond the quantum perturbation approximation based on the nonperturbative energy spectrum, and is therefore applicable to much higher angular momenta. For the calculation of the MI shell corrections [Formula: see text], the Strutinsky smoothing procedure is used to obtain the average occupation numbers of the particle density generated by the resolution of the Woods–Saxon eigenvalue problem. One finds that the major-shell structure of [Formula: see text], as determined in the adiabatic approximation, is rooted, for large as well as for small surface deformations, in the same inhomogenuity of the distribution of single-particle states near the Fermi surface as the energy shell corrections [Formula: see text]. This fundamental property is in agreement with the semiclassical results [Formula: see text] obtained analytically within the non perturbative periodic orbit theory for any potential well, in particular for the spheroidal cavity, and for any deformation, even for large deformations where bifurcations of the equatorial orbits play a substantial role. Since the adiabatic approximation, [Formula: see text], with [Formula: see text] the distance between major nuclear shells, is easily obeyed even for large angular momenta typical for high-spin physics at large particle numbers, our model approach seems to represent a tool that could, indeed, be very useful for the description of such nuclear systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3