Macroscopic versus microscopic models in predicting α-decay half-lives of actinide nuclei

Author:

Sridhara G. R.12,Manjunatha H. C.3,Munirathnam R.4,Sowmya N.3,Ramalingam H. B.2

Affiliation:

1. Department of Physics, Government First Grade College, Kolar 563101, Karnataka, India

2. Department of Physics, Government Arts College, (Affiliated to Bharathiar University), Udumalpet 642126, Coimbatore, India

3. Department of Physics, Government College for Women, Kolar 563101, Karnataka, India

4. Rajah Serfoji Government College (Autonomous), Thanjavur 613005, Tamilnadu, India

Abstract

This paper investigates the predictive power of the macroscopic and microscopic models in alpha-decay of actinide nuclei. Macroscopic theoretical models such as Coulomb and Proximity potential model (CPPM), Modified generalized liquid drop model (MGLDM) and Effective liquid drop model (ELDM) are applied in predicting the alpha-decay half-lives of actinide nuclei. The half-lives produced by these macroscopic models are compared with that of microscopic models such as Cluster model with two-potential approach (CM), Microscopic cluster model (MCM), Multichannel cluster model (MCCM) and that of experiments. The deviation of these models with the experiments is quantified using statistical treatment such as root mean square deviation [Formula: see text] (RMSD), mean deviation ([Formula: see text]), index [Formula: see text] and root mean square error (RMSE). It is found that among the microscopic and macroscopic models, ELDM and MCCM are, respectively, found to be accurate than that of other models. The microscopic model MCCM produces alpha-decay half-lives close to the experiments in the actinide region. The appropriate mass excess values have been identified to predict the exact alpha-decay half-lives in the actinide region.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3