Shape phase transitions and isotopic shift in barium isotopes within covariant density functional theory

Author:

Karim Afaque1,Naz Tabassum1,Ahmad Shakeb2

Affiliation:

1. Department of Physics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India

2. Physics Section, Women’s College, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India

Abstract

A systematic search of the shape phase transitions and isotopic shift of the neutron-rich barium (Ba; [Formula: see text]) isotopes, as a candidate for transitional nuclei, is done within the covariant density functional theory (CDFT). The relativistic Hartree–Bogoliubov (RHB) formalism with separable pairing and relativistic mean-field (RMF) with BCS pairing are used. The constraint calculations assuming the axial symmetry as well as triaxial symmetry clearly manifest the shape coexistence and the transitional behavior in these nuclei. A strong shell closure is observed at [Formula: see text] and weaker shell/subshell closure is observed at [Formula: see text]. Shape transition below and above the shell closure location at [Formula: see text] (from prolate to spherical to prolate) is there. The candidates for [Formula: see text] and [Formula: see text] dynamical symmetries are found to be [Formula: see text]Ba, [Formula: see text]Ba and [Formula: see text]Ba, [Formula: see text]Ba nuclei, respectively. The calculated results are compared with the available experimental data and are in good agreement. We have investigated the model dependence as well as dependence on various model parameters. A comparison is made with other theoretical models: infinite nuclear matter (INM) model, macro–microscopic finite-range droplet model (FRDM) and the self-consistent Hartree–Fock–Bogoliubov (HFB) model. Overall good agreement is found within the different models used and between the calculated and experimental results.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3