Polarization phenomenon in heavy-ion collisions

Author:

Niida Takafumi1ORCID,Voloshin Sergei A.2ORCID

Affiliation:

1. Department of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

2. Department of Physics and Astronomy, Wayne State University, 666 W. Hancock, Detroit, MI 48201, USA

Abstract

The strongly interacting system created in ultrarelativistic nuclear collisions behaves almost as an ideal fluid with rich patterns of the velocity field exhibiting strong vortical structure. Vorticity of the fluid, via spin-orbit coupling, leads to particle spin polarization. Due to the finite orbital momentum of the system, the polarization on average is not zero. It depends on the particle momenta reflecting the spatial variation of the local vorticity. In the last few years, this field experienced a rapid growth due to experimental discoveries of the global and local polarizations. Recent measurements triggered further development of the theoretical description of the spin dynamics and suggestions of several new mechanisms for particle polarization. In this review, we focus mostly on the experimental results. We compare the measurements with the existing theoretical calculations but try to keep the discussion of possible underlying physics at the qualitative level. Future measurements and how they can help to answer open theoretical questions are also discussed. We pay a special attention to the employed experimental methods, as well as to the detector effects and associated corrections to the measurements.

Funder

Nuclear Physics

Japan Society for the Promotion of Science

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3