GOLD NANOROD PHOTOTHERMAL THERAPY IN A GENETICALLY ENGINEERED MOUSE MODEL OF SOFT TISSUE SARCOMA

Author:

LIN KEVIN Y.1,BAGLEY ALEXANDER F.2,ZHANG ALEXIA Y.3,KARL DANIEL L.3,YOON SAM S.3,BHATIA SANGEETA N.4

Affiliation:

1. Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

2. Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

3. Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA

4. David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

Plasmonic nanomaterials are poised to impact the clinical management of cancer through their ability to convert externally applied energy into localized heat at sites of diseased tissue. However, characterization of plasmonic nanomaterials as cancer therapeutics has been limited to xenograft models, creating a need to extend these findings to more clinically relevant models of cancer. Here, we evaluate the method of photothermal ablation therapy in a genetically engineered mouse model (GEMM) of sarcoma, which more accurately recapitulates the human disease in terms of structure and biology than subcutaneous xenograft models. Using polyethylene glycol (PEG)-coated gold nanorods (PEG-NRs), we quantitatively evaluate the ability of nanoparticles to penetrate and accumulate in sarcomas through passive targeting mechanisms. We demonstrate that PEG-NR–mediated photothermal heating results in significant delays in tumor growth with no progression in some instances. Lastly, by evaluating our photothermal ablation protocol in a GEMM, we observe off-target heating effects that are not detectable in xenograft models and which may be of future clinical interest.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3