Coating Made fromPseudotsuga menziesiiPhytosynthesized Silver Nanoparticles is Efficient AgainstStaphylococcus aureusBiofilm Formation

Author:

Dwivedi Poushpi1,Narvi S. S.1,Tewari R. P.2

Affiliation:

1. Chemistry Department, Motilal Nehru National Institute of Technology, Allahabad, UP, India

2. Applied Mechanics Department, Motilal Nehru National Institute of Technology, Allahabad, UP, India

Abstract

In this nano era, biomaterials associated infection is a serious problem in the biomedical arena. The race between microbial adhesion and tissue integration becomes a major cause of concern, during the implantation process. Microbial adhesion further gives rise to biofilm formation which finally leads to implant failure. We have therefore designed a strategy to fight effectively against the encroachment of Staphylococcus aureus biofilm, which is chiefly responsible for majority of biomaterials associated infections. Silver nanoparticles have been synthesized for the purpose using foliage needles of the plant Pseudotsuga menziesii, our Christmas tree. Thereafter the nanoparticles were dispersed in chitosan, a biopolymer matrix and a bionanocomposite, self-sterilizing coating biomaterial was developed. The silver nanoparticles produced, the bionanocomposite developed, and the coating over medical implant, have been characterized through various techniques. The efficacy of the silver/chitosan bionanocomposite, against S. aureus biofilm has been studied here, after being coated over medical implant. It was found that coating of medical implants with this material can definitely restrict bacterial adhesion and their subsequent biofilm formation. This biomaterial was found to be blood and biocompatible at specific levels through testing.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3