Effects of Nanoscale Structures on Photothermal Heating Behaviors of Surface-Modified Fe3O4 Nanoparticles

Author:

Sadat M. E.1,Mast David B.1,Sookoor Jason2,Xu Hong3,Dunn Andrew W.4,Shi Donglu4ORCID

Affiliation:

1. Department of Physics, University of Cincinnati, Cincinnati OH 45221, USA

2. Department of Neuroscience, University of Cincinnati, Cincinnati OH 45221, USA

3. Med-X Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China

4. The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati OH 45221, USA

Abstract

In this investigation, the photothermal heating of superparamagnetic Fe3O4 nanoparticles was carried out by irradiating with either 785[Formula: see text]nm or 808[Formula: see text]nm near infrared (NIR) lasers. The effects of nanoparticle configuration, arrangement, and surface coating on the photothermal heating behavior were investigated for different Fe3O4 nanoparticle systems. Depending on the preparation method, Fe3O4 nanoparticles with mean hydrodynamic diameter ranging from 30[Formula: see text]nm to 250[Formula: see text]nm were synthesized. Photothermal transduction efficiency is a measure of light to thermal energy conversion; the highest efficiency obtained was 56% by 785[Formula: see text]nm and 42% by 808[Formula: see text]nm light irradiation for poly(acrylic) acid (PAA) coated Fe3O4 samples. With this conversion efficiency, the PAA-coated Fe3O4 nanoparticles raised the solution temperature [Formula: see text] [Formula: see text]C above physiological temperature, which is sufficient for cancer therapeutics. Photothermal transduction efficiency was found to decrease as the particle hydrodynamic diameter increased. Nanoparticle absorption and scattering properties were found different due to surface modifications. UV-VIS-NIR absorption spectroscopy was carried out and results were analyzed using the Mie scattering theory. Experimental photothermal transduction efficiency was found to scale with the theoretical results for a particular wavelength. These results have significance in the design and development of the Fe3O4 nanoparticle systems for effective cancer therapy with NIR light.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3