Investigation on Metal Nanoparticles: Nickel Oxide, Cuprous Oxide and Tin Ferrite with Their Humidity Sensing at Room Temperature

Author:

Singh Swati1,Chaudhary Priyanka1,Singh Sunanda1,Verma Vandana1,Srivastava Richa1,Tripathi Ravi Kant1,Singh Kaman2,Yadav B. C.1

Affiliation:

1. Nanomaterials and Sensors Research Laboratory, Department of Physics, School of Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India

2. Department of Chemistry, School of Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, U.P., India

Abstract

This paper deals with the facile approach to the synthesis of different metal oxide nanoparticles and their comparative study for humidity sensing application at room temperature. The synthesis of these metal oxide nanoparticles is through co-precipitation method for nickel oxide and tin ferrite and hydrothermal route for cuprous oxide. The SEM and EDX reveal the porous morphology and confirmed composition of the synthesized metal oxides. FTIR detects the presence of functional groups like –OH and confirms the inverse spinal structure in tin ferrite. The optical band gap was determined by UV spectroscopy: 3.86[Formula: see text]eV for NiO, 4.13[Formula: see text]eV for Cu2O, and 4.07[Formula: see text]eV for SnFe2O4. XRD gives the information about the average crystallite size for tin ferrite 2.42[Formula: see text]nm, cuprous oxide 12.88[Formula: see text]nm and nickel oxide 22.51[Formula: see text]nm as the size comes to nano range the surface area increases, which is a good indication for humidity sensing. The humidity sensing of materials was detected by electrical modes. The deposited thin films were prepared by spin coater and observed sensitivity of these films was 0.72[Formula: see text]M[Formula: see text]/%RH for NiO, 1.59[Formula: see text]M[Formula: see text]/%RH for Cu2O, and 2.07[Formula: see text]M[Formula: see text]/%RH for SnFe2O4. The experiments were repeated after few weeks and the aging effects of samples were found negligible which makes the sensor stable.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3