Polypeptide-Facilitated Formation of Bimetallic Plasmonic Nanoparticles in Presence of Ionizing Radiation

Author:

Pushpavanam Karthik1,Chang John2,Sapareto Stephen2,Rege Kaushal1

Affiliation:

1. Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, US

2. Banner-MD Anderson Cancer Center, Gilbert, Arizona 85234, US

Abstract

Ionizing radiation, which includes X-rays and gamma rays, is used in a variety of different applications, including in human health. However, high levels of exposure can result in significant morbidity and mortality in humans. Molecular and nanoscale systems that can detect different levels of ionizing radiation can ultimately lead to effective sensing platforms for a variety of applications. In the current work, we describe the use of polypeptide-templated formation of bimetallic metal nanoparticles with potential applications as a colorimetric reporter of elevated levels of ionizing radiation typically used in blood irradiation. Cysteine-containing elastin-like polypeptides were employed together with reducing agents in order to engender radiation-facilitated formation of bimetallic gold–silver bimetallic nanoparticles from a mixture of their respective metal salts. This formation of colored nanoparticle dispersions from colorless metal salt solutions acted as a visual reporter of ionizing radiation in the dose range of 25–100 Gy. Nanoparticles were characterized using UV–visible spectroscopy, transmission electron microscopy, elemental analyses and dynamic light scattering. Our results indicate that polypeptide-bimetallic nanoparticle systems may be attractive reporters of elevated levels of ionizing radiation.

Funder

Defense Threat Reduction Agency

Publisher

World Scientific Pub Co Pte Lt

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3