Contemporary Development on the Performance and Functionalization of Ultra High Molecular Weight Polyethylene (UHMWPE) for Biomedical Implants

Author:

Singh Devendra Kumar1,Verma Rajesh Kumar1

Affiliation:

1. Materials & Morphology Laboratory, Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India

Abstract

Polymers are widely used in biomedical implants due to their low cost, ability to shape easily in different ways, low friction and strong anti-corrosion properties. Numerous polymers such as polytetrafluoroethylene (PTFE), polyamide (PA), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyurethane (PU), Epoxy and ultra-high-molecular-weight polyethylene (UHMWPE) are used to develop modified biomaterials applications. Among these polymers, UHMWPE stands out as a polymer with superior customization properties to satisfy specific requirements of the human body. Investigations show that the medical-grade and prosthetic product market gained dominance in 2020, accounting for over 30% of global sales. UHMWPE has proven its dominance in tribological applications such as bearings and biomedical components. Despite its exceptional tribological properties, UHMWPE struggles with drawbacks such as poor load-bearing capability and low thermal stability. Researchers are working on various paths to develop UHMWPE composites and hybrid composites with nano/micro fillers to develop a composite framework to address these challenges. This review paper aims to amalgamate the results from these studies. It provides an overview of the studies conducted and their contribution to our current understanding of various routes taken by different researchers to enhance the tribological efficiency of UHMWPE biomaterials. This discussion may inspire the development of low friction and improved wear resistance properties in polymer (UHMWPE) biomaterial composites.

Funder

Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology

Publisher

World Scientific Pub Co Pte Lt

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3