Electronic structure of low-spin six-coordinate iron(III) meso-tetrapropylchlorin complexes

Author:

Ikezaki Akira1,Ono Jyunpei1,Ohgo Yoshiki1,Fukagawa Mari1,Ikeue Takahisa2,Nakamura Mikio134

Affiliation:

1. Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan

2. Department of Material Science, Interdisciplinary Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan

3. Department of Chemistry, Faculty of Science, Toho University, Funabashi 274-8510, Japan

4. Research Center for Materials with Integrated Properties, Toho University, Funabashi 274-8510, Japan

Abstract

Low-spin iron(III) tetrapropylchlorins [ Fe ( T n PrC ) L 2]± (L = HIm, 1-MeIm, DMAP, CN-, 4-CNPy, tBuNC) adopt the dxy-type ground state regardless of the nature of axial ligands. Among the complexes examined, [ Fe ( T n PrC )( t BuNC )2]+ has shown quite unique spectroscopic properties as described below. (1) 1 H NMR signals were extremely broad as compared with those of other complexes. In particular, 5,20- CH 2(α) signal was too broad to detect. (2) No signals except C γ were observed in 13 C NMR spectra. (3) Tetragonal splitting parameter (|Δ|) estimated by the EPR g values at 4.2 K reached as much as 12.4 λ, which is the largest |Δ| value among all the low-spin iron(III) porphyrins and porphyrinoids reported previously. On the basis of these results, we have concluded that [ Fe ( T n PrC )( t BuNC )2]+ adopts the low-spin iron(III) with (dxz, dyz)4(dxy)1 electronic ground state at 4.2–30 K where the EPR spectra are taken, while it should be expressed as the low-spin Fe ( II ) chlorin π-radical cation [ Fe II ( T n PrC .)( t BuNC )2]+ at ambient temperature where the NMR spectra are taken.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3